THE LECTURE 16

IMAGE VIEWER

CREATE A NEW PROJECT

Visual Studio 2019

Open recent Get started

As you use Visual Studio, any projects, folders, or files that you open will show up here for quick
access. Clone or check out code

Get code from an online repaository like GitHub

You can pin anything that you open frequently so that it's always at the top of the list.
or Azure DevOps

Open a project or solution

Open a local Visual Studio project or .sin file

Open a local folder

Navigate and edit code within any folder

Create a new project

Choose a project template with code scaffolding
to get started

CREATE A NEW PROJECT

Create a new project : Pltrm | | Prject type

Recent project templates Fitering by Desktop

A list of your recently accessed templates will be ~
displayed hare D Windows Forms App (NET Framework)

raject for creating an application with a W
Windcras Dkl

Windows Forms Control Library (NET Framework)

o't | =at raale 1

Desktof LD rary
Windows Farms App (NET Framework)
ject | eating an aoplicati
Windows Desktop
Windows Forms Control Library (NET Framewor
rowect f pating control
Visual Base Wirndows Deskton Library

Not finding what you

Windows Forms App

When you create a Windows Forms App project, you actually build a program that runs. In this tutorial, your

picture viewer app doesn't do much yet—although it will. For now, it displays an empty window that shows
Forml in the title bar.

Here's how to run your app.

1.Choose one of the following methods:
*Choose the F5 key.

*On the menu bar, choose Debug > Start Debugging.
*On the toolbar, choose the Start Debugging button, which appears as follows:

Start Debugging toolbar button

p Start -

Windows Forms App

+Visual Studio runs your app, and a window called Form1 appears. The following screenshot shows the app you
just built. The app is running, and you'll soon add to it. g

Windows Forms App, running
*Go back to the Visual Studio integrated development environment (IDE), and then look at the new toolbar.
Additional buttons appear on the toolbar when you run an application. These buttons let you do things like stop
and start your app, and help you track down any errors (bugs) it may have. For this example, we're using it to
start and stop the app.

Debugging toolbar

*Use one of the following methods to stop your app: e TE "
*On the toolbar, choose the Stop Debugging button. |
*On the menu bar, choose Debug > Stop Debugging. Stop Debugging (Shift+Fs5)
*Use your keyboard and press Shift+F>5.

*Choose the X button in the upper corner of the Form1 window.

TABLELAYOUTPANEL CONTROL

*On the left side of the Visual Studio IDE, choose the Toolbox tab.

(Alternatively, choose View > Toolbox from the menu bar, or press Ctrl+Alt+X.)

*Choose the small triangle symbol next to the Containers group to open it, as shown in the following
screenshot.

Toolbox * B2
Search Toclbox P~
I= All Windows Forms

I Common Controls

4 Containers
&k Pointer

SANN0S BB X0Q|00]

=" FlowLayoutPane

m GroupBox
Panel
= splitContainer
3 Ttabcontrol

& TableLayoutPanel |
I Menus & Toolbars

b Data

[- Components

[+ Printing

[Dialogs

[WPF Interoperability

I* Visual Basic PowerPacks

4 General

TABLELAYOUTPANEL CONTROL

= You can add controls like buttons, check boxes, and labels to your form. Double-click the TableLayoutPanel
control in the Toolbox. (Or, you can drag the control from the toolbox onto the form.) When you do this, the
IDE adds a TableLayoutPanel control to your form, as shown in the following screenshot.

;%";l T Picture Viewer = | [=] [é]
e :

----11

. : 6

a : ;

TABLELAYOUTPANEL CONTROL

Be sure the TableLayoutPanel is selected by choosing it. You can verify what control is selected by looking at the
drop-down list at the top of the Properties window, as shown in the following screenshot.

tableLayoutPanell System.Windows.Forms.TableLayoutPane.. -

= 2|92 F | &

Properties window showing TableLayoutPanel control
*Choose the Alphabetical button on the toolbar in the Properties window. This sorts the list of properties in the

Properties window in alphabetical order, which makes it easier to locate properties in this tutorial.

*The control selector is a drop-down list at the top of the Properties window. In this example, it shows that a control
called tableLayoutPanell is selected. You can select controls either by choosing an area in Windows Forms Designer
or by choosing from the control selector.

*Now that the TableLayoutPanel is selected, find the Dock property and choose Dock, which should be set to None.
Notice that a drop-down arrow appears next to the value. Choose the arrow, and then select the Fill button (the large
button in the middle), as shown in the following screenshot.

TABLELAYOUTPANEL CONTROL

= Docking in Visual Studio refers to when a window is attached to another window or area in the IDE. For example,
the Properties window can be undocked—that is, unattached and free-floating within Visual Studio—or it can be

docked against Solution Explorer.

tableLayoutPanel1 System.Windows.Forms.TableLayoutPan... =

=] [B]F | #

AutoScoroll False
AutoScroliMargin 0,0
AutoScroliMinSize 0,0

AutoSize False

AutoSizeMode GrowOnly

ColumnCount 2

Columns (Collection)

Growstyle
Location
Margin

B H

MaximumSize

B H

Minimum5ize
Padding
RowCount
Rows

E3]

Dock

Fill

2
{Collection)

Defines which borders of the control are bound to the

container.

TABLELAYOUTPANEL CONTROL

= After you set the TableLayoutPanel Dock property to Fill, notice that the panel fills the entire form. If you resize
the form again, the TableLayoutPanel stays docked, and resizes itself to fit.

= Currently, the TableLayoutPanel has two equal-size rows and two equal-size columns. Let's resize them so the top
row and right column are both much bigger. In Windows Forms Designer, select the TableLayoutPanel. In the
upper-right corner, there is a small black triangle button, which appears as follows.

(b

Triangle button
This button indicates that the control has tasks that help you set its properties automatically

TABLELAYOUTPANEL CONTROL

Choose the triangle to display the control's task list, as shown in the following screenshot.
[l ot

14

TableLayoutPanel Tasks

Add Column
Add Row
Remove Last Column

Remove Last Row

Edit Rows and Columns...

TableLayoutPanel tasks

Choose the Edit Rows and Columns task to display the Column and Row Styles window. Choose Column|, and

set its size to |5 percent by being sure the Percent button is selected and entering 15 in the Percent box. (That's
a NumericUpDown control, which you'll use in a later tutorial.) Choose Column2 and set it to 85 percent. Don't
choose the OK button yet, because the window will close. (But if you do, you can reopen it by using the task list.)

TABLELAYOUTPANEL CONTROL

" Choose the Edit Rows and Columns task to display the Column and Row Styles window. Choose
Columnl, and set its size to |5 percent by being sure the Percent button is selected and entering 15 in the
Percent box. (That's a NumericUpDown control, which you'll use in a later tutorial.) Choose Column2 and set
it to 85 percent. Don't choose the OK button yet, because the window will close. (But if you do, you can reopen
it by using the task list.)

Show: | Columns Size Type

B o
Member Size Type Value () Absolute 20 = pixels

' Columni Percent 15.00 % (@) Percent 15.00 = %

Columim2 Percent 85.00 %

() AutoSize

ij Column and row spanning:
If you want a control o span multiple rows or
columns, set the RowSpan and ColumnSpan
properties on the control.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.numericupdown

TABLELAYOUTPANEL CONTROL

From the Show drop-down list at the top of the Column and Row Styles window, choose Rows. Set Rowl to
90 percent and Row?2 to 10 percent.

Choose the OK button. Your TableLayoutPanel should now have a large top row, a small bottom row, a small
left column, and a large right column. (You can resize the rows and columns in the TableLayoutPanel by
choosing tableLayoutPanell in the form and then dragging its row and column borders.)

! Picture viewer | = [=] |gﬁ]

]

ADD CONTROLS

*Choose the Toolbox tab on the left side of the Visual Studio IDE (or press Ctrl+Alt+X), and then expand
the Common Controls group. This shows the most common controls that you see on forms.

*Double-click the PictureBox item to add a PictureBox control to your form. Because the TableLayoutPanel
Is docked to fill your form, the IDE adds the PictureBox control to the first empty cell (the upper left corner).

*Choose the new PictureBox control to select it, and then choose the black triangle on the new PictureBox
control to display its task list, as shown in the following screenshot.

PictureBox Tasks

Choose Image
l

CoCoimrmEr Size Mode | Normal -
1

Dock in parent container

ADD CONTROLS

In the PictureBox Tasks menu from the PictureBox control, choose the Dock in parent container link. This
automatically sets the PictureBox Dock property to Fill. To see this, choose the PictureBox control to select it,
go to the Properties window, and be sure that the Dock property is set to Fill.

Make the PictureBox span both columns by changing its ColumnSpan property. In the PictureBox, choose
the PictureBox control and set its ColumnSpan property to 2. Also, when the PictureBox is empty, you want
to show an empty frame. Set its BorderStyle property to Fixed3D.

Choose the TableLayoutPanel on the form and then add a CheckBox control to the form. Double-click the
CheckBox item in the Toolbox to add a new CheckBox control to the next free cell in your table. Because a
PictureBox takes up the first two cells in the TableLayoutPanel, the CheckBox control is added to the lower-left cell.
Choose the Text property and type in the word Stretch, as shown in the following image.

E e |

ADD BUTTONS

Choose the new FlowLayoutPanel that you added. Go to Common Controls in the Toolbox and double-click
the Button item to add a button control called buttonl to your FlowLayoutPanel. Repeat to add another
button. The IDE determines that there's already a button called button1 and calls the next one button2.

Typically, you add the other buttons by using the Toolbox. This time, choose button2, and then from the
menu bar, choose Edit > Copy (or press Ctrl+C). Next, choose Edit > Paste from the menu bar (or press
Ctrl+V) to paste a copy of your button. Now paste it again. Notice that the IDE adds button3 and button4 to
the FlowLayoutPanel.

*Choose the first button and set its Text property to Show a picture. Then set the Text properties of the
next three buttons to Clear the picture, Set the background color, and Close.

Let's size the buttons and arrange them so they align to the right side of the panel. Choose the
FlowLayoutPanel and look at its FlowDirection property. Change it so it's set to RightToL eft.

The buttons should align themselves to the right side of the cell, and reverse their order so that the Show a
picture button is on the right.

ADD BUTTONS

Choose the Close button to select it. Then, to choose the rest of the buttons at the same time, press and hold
the Ctrl key and choose them, too.

After you've selected all the buttons, go to the Properties window and scroll up to the AutoSize property.This
property tells the button to automatically resize itself to fit all of its text. Set it to True.

Your buttons should now be sized properly and be in the right order. (As long as all four buttons are selected, you
can change all four AutoSize properties at the same time.) The following image shows the four buttons.

. --------- n Pt w | B | Y | Sty E :::::::::::::::::_i::::::::::::::::!
(n Close M Set the background colar Clear the picture Show a picture :
L o T i b, R W W 4

NAMEYOUR BUTTON CONTROLS

= On the form, choose the Close button. (If you still have all the buttons selected, choose the Esc key to cancel
the selection.) Scroll in the Properties window until you see the (Name) property. (The (Name) property is
near the top when the properties are alphabetical.) Change the name to closeButton, as shown in the following

screenshot.
Properties = 0 X

closeButton Systermn.Windows.Forms.Button -

=[] F | &

(ApplicationSettings)

[DataBindings)

(Mame) closeButton
AccessibleDescript...

AccessibleMame

AccessibleRole Default

AllowDrop False

Anchor Top, Left =
(Mame)

Indicates the name used in code to identify
the object.

NAMEYOUR BUTTON CONTROLS

Rename the other three buttons to backgroundButton, clearButton, and showButton.You can verify the names by
choosing the control selector drop-down list in the Properties window. The new button names appear.

Double-click the Show a picture button on the form.As an alternative, choose the Show a picture button on the
form, and then press the Enter key.When you do, the IDE opens an additional tab in the main window named
Form|.cs. (If you're using Visual Basic, the tab is named Form|.vb).

This tab displays the code file behind the form, as shown in the following screenshot.

NAMEYOUR BUTTON CONTROLS

Forml.cs 1 X

| #= Picture_Viewer.Form1 - @E showButton_Click(object sender, EventArgs e)

= using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

= namespace Picture_Wiewer
{

3 references
= public partial class Forml : Form

{
1 reference

= public Forml()

InitializeComponent();
]

1 reference
= private void tableLayoutPanell_Paint({object sender, FaintEventArgs e)
{

H

1 reference

= private void showButton_Click{ocbject sender, EventArgs e)

BUTTON CLICKS

= You're looking at code called showButton_Click() (alternatively, ShowButton_Click()). The IDE added this to the
form's code when you opened the code file for the showButton button.At design-time, when you open the code
file for a control in a form, code is generated for the control if it doesn't already exist. This code, known as a
method, runs when you run your app and choose the control - in this case, the Show a picture button.

" Choose the Windows Forms Designer tab again (Form|.cs [Design]), and then open the code file for the Clear
the picture button to create a method for it in the form's code. Repeat this for the remaining two buttons. Each
time, the IDE adds a new method to the form's code file.

" To add one more method, open the code file for the CheckBox control in Windows Forms Designer to make the
IDE add a checkBox|_CheckedChanged() method.That method is called whenever the user selects or clears the
check box.

BUTTON CLICKS

= private void clearButton_Click(object sender, EventArgs e)

{
}

= private void backgroundButton_Click(object sender, EventArgs e)

{
}

= private void closeButton_Click(object sender, EventArgs e)

{
}

= private void checkBox|_CheckedChanged(object sender, EventArgs e)

{
}

ADD DIALOG COMPONENTS TO THE FORM

" To add a component called openFileDialogl to your form, double-click OpenFileDialog. To add a component called colorDialog!| to your form,
double-click ColorDialog in the Toolbox. (You use that one in the next tutorial step.) You should see an area at the bottom of Windows Forms
Designer (beneath the Picture Viewer form) that has an icon for each of the two dialog components that you added, as shown in the following image.

E openFileDialog m colorDialogl

= Dialog components

= Choose the openFileDialogl icon in the area at the bottom of the Windows Forms Designer. Set two properties:

= Set the Filter property to the following (you can copy and paste it):

= JPEG Files (*jpg)|*.jpg|PNG Files (*.png)|*.png|BMP Files (*.bmp)[*.bmpl|All files (**)[**

= Set the Title property to the following: Select a picture file

= The Filter property settings specify the kinds of file types that will display in the Select a picture file dialog box.

ADD METHOD

= private void showButton_Click(object sender, EventArgs e)

=

o if (openFileDialogl|.ShowDialog() == DialogResult.OK)
= A

o pictureBox | .Load(openFileDialog| .FileName);
=}

ADDITIONAL BUTTONS

= private void clearButton_Click(object sender, EventArgs e)

=

m Il Clear the picture.

L pictureBox|.Image = null;
=}

= private void backgroundButton_Click(object sender, EventArgs e)

=
m I/ Show the color dialog box. If the user clicks OK, change the
u I/ PictureBox control's background to the color the user chose.

m if (colorDialog|.ShowDialog() == DialogResult.OK)

m pictureBox |.BackColor = colorDialog|.Color;

ADDITIONAL BUTTONS

= private void closeButton_Click(object sender, EventArgs e)

= |

/I Close the form.

this.Close();

= private void checkBox|_CheckedChanged(object sender, EventArgs e)

= A

m /I If the user selects the Stretch check box,

= /I change the PictureBox's

= /I SizeMode property to "Stretch". If the user clears

= /I the check box, change it to "Normal".

m if (checkBox|.Checked)

u pictureBox|.SizeMode = PictureBoxSizeMode.Stretchimage;
u else

u pictureBox|.SizeMode = PictureBoxSizeMode.Normal;

